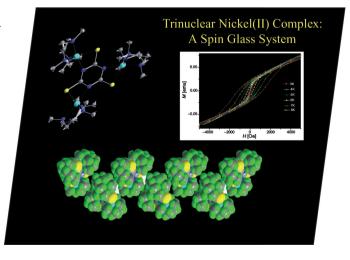


Austria

Chem PubSoc

Europe

SPAIN

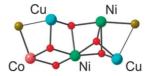


The cover picture shows the structure of a new trinuclear nickel(II) complex with N,N,N',N'',N''pentamethyldiethylenetriamine (pmdien) and a trithiocyanurate(3-) (ttc3-) bridge, [Ni3(pmdien)3-(μ-ttc)](ClO₄)₃. This trimer shows ferromagnetic interactions among nickel(II) magnetic centers and spin glass properties, which has been confirmed by the magnetization measurements at different temperatures, where the hysteresis loop is well visible in AC, FCM, and ZFCM measurements. Details are discussed in the article by J. Mrozinski et al. on p. 5475ff.

Portugal

5459

SHORT COMMUNICATION


A Cu/Co/Ni Pentanuclear Core

D. S. Nesterov*, V. N. Kokozay, B. W. Skelton 5469-5473

A Pentanuclear Cu/Co/Ni Complex with 2-(Dimethylamino)ethanol — Observation of a Rare Molecular Structure Type and Its Place in General Structural Types: An Analysis of the Cambridge Structural Database

Keywords: Heterometallic complexes / Direct synthesis / X-ray diffraction / Cambridge Structural Database / Amino alcohols

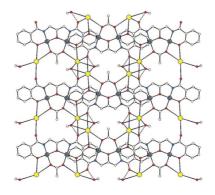
The heterotrimetallic Cu/Co/Ni complex with 2-(dimethylamino)ethanol has been prepared by direct synthesis. The pentanuclear coordination core of the presented complex possesses extremely rare asymmetric organization. The general pentanuclear molecular structure types and their comparison with the structure of the presented compound are discussed.

FULL PAPERS

Trinuclear Ni(II) Complexes

Ferromagnetic Properties of a Trinuclear Nickel(II) Complex with a Trithiocyanurate Bridge

Keywords: Nickel / Magnetic properties / Bridging ligands / Multinuclear complexes

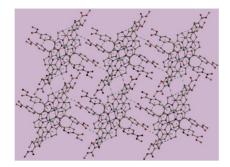

The trinuclear nickel(II) complex [Ni₃-(pmdien)₃(μ -ttc)](ClO₄)₃ with N,N,N',N'',N''-pentamethyldiethylenetriamine (pmdien) and a trithiocyanurate(3–) (ttc³–) bridge was synthesized. This trinuclear nickel(II) complex has a regular triangular Ni₃ core. The trimer showed ferromagnetic interactions among the Ni^{II} magnetic centers and spin-glass properties.

Versatile Coordination in Supramolecules

L. Stoicescu,* C. Duhayon, L. Vendier, A. Tesouro-Vallina, J.-P. Costes, J.-P. Tuchagues* 5483-5493

Structure and Properties of Copper(II), Manganese(III), and Iron(III) Complexes with Potentially Pentaanionic Heptadentate Ligands Including Alkoxido, Amido, and Phenoxido Donors

Keywords: Dinuclear complexes / Coordination modes / Copper / Iron / Manganese / Magnetic properties



The coordination ability and versatility of the potentially pentaanionic heptadentate ligands $H_5L^1-H_5L^3$ towards transition-metal ions is demonstrated by the different dinucleating chelation modes described in this report. The sheetlike packing in the 2D $[Cu_2(L^1)(OAc)Cs_2(MeOH)_2]_n$ coordination polymer is shown.

Tuning Supramolecular Networks

Eight esterified TCPP compounds were successfully synthesized by solvothermal reactions and characterized. The reaction mechanism was investigated. Esterification plays a vital role in the properties, structural motifs and supramolecular networks.

W. Chen, S. Fukuzumi* 5494-5505

Change in Supramolecular Networks through In Situ Esterification of Porphyrins

Keywords: Solid-state structures / Esterification / Porphyrinoids / Phosphorescence / Luminescence / Nitrogen heterocycles

Biomimetic Chemistry

Carboxylate-rich diiron compounds are prepared with tethered aromatic substrates as structural and functional models for the active sites of non-heme diiron metalloproteins.

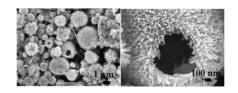

S. Friedle, S. J. Lippard* 5506-5515

Synthesis, Characterization, and Oxygenation Studies of Carboxylate-Bridged Diiron(II) Complexes with Aromatic Substrates Tethered to Pyridine Ligands and the Formation of a Unique Trinuclear Complex

Keywords: Bioinorganic chemistry / Enzyme models / Iron / Diiron hydroxylase / Oxidation / Steric hindrance / Carboxylate ligands / EPR spectroscopy / Moessbauer spectroscopy

Bis(phosphoranido) Complexes

trans-Bis(phosphoranido)platinum(II) complexes, which are the first square-planar complexes to bear two phosphoranide ligands in a trans array, were synthesized. The structural property was confirmed by X-ray structural analysis of the bis(phosphoranido) complex bearing triphenyl phosphites.



K. Kajiyama,* I. Sato, S. Yamashita, T. K. Miyamoto 5516-5521

Syntheses and Characterization of Novel *trans*-Bis(phosphoranido)platinum(II) Complexes: Reactions of Lithium Bis(naphth-1,8-diyl-8-oxy)phosphoranide with *cis*-PtCl₂(PR₃)₂ (R = OPh, OMe, Me)

Keywords: Hypervalent compounds / Platinum / Phosphane ligands / Ligand effects

The solvothermal synthesis of hierarchically nanostructured hydroxyapatite hollow spheres assembled from nanorods was carried out at 200 °C for 24 h in water/N,N-dimethylformamide (DMF) mixed sol-

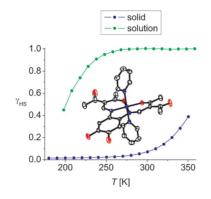
Hydroxyapatite Hollow Spheres

M.-G. Ma,* J.-F. Zhu 5522-5526

Solvothermal Synthesis and Characterization of Hierarchically Nanostructured Hydroxyapatite Hollow Spheres

Keywords: Materials science / Nanostructures / Self-assembly

vents.

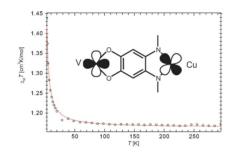

CONTENTS

Spin-Crossover Complexes

B. Weber,* J. Obel, D. Henner-Vásquez, W. Bauer 5527-5534

Two New Iron(II) Spin-Crossover Complexes with N_4O_2 Coordination Sphere and Spin Transition around Room Temperature

Keywords: Iron / Magnetic properties / Spin crossover / Schiff bases



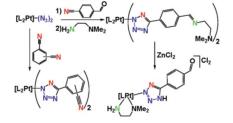
A new modification of an N_2O_2 coordinating Schiff base like ligand enables a more detailed investigation of the influence of H-bonds on spin-crossover properties. A significant increase in the transition temperature was observed.

Trinucelar Complexes

Control of Exchange Interactions in Trinuclear Complexes Based on Orthogonal Magnetic Orbitals

Keywords: Magnetic properties / Schiff bases / Copper / Vanadium / N,O ligands

The magnetic properties of trinuclear complexes can be controlled by using the principles of strict orthogonality of the magnetic orbitals.


Metal-Promoted Cycloadditions

J. Lasri,* M. F. C. Guedes da Silva,* M. N. Kopylovich,

B. Ghosh Mukhopadhyay,

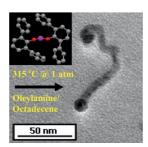
A. J. L. Pombeiro* 5541-5549

Platinum(II)-Promoted [2+3] Cycloaddi-

Cycloaddition of bis(azido)platinum(II) with 4-cyanobenzaldehyde furnishes (formylphenyl)tetrazolate Pt^{II} that reacts with 2-dimethylaminoethylamine to give the corresponding Schiff base derivative; the latter undergoes hydrolysis in the presence of a metal salt. Reactions with dicyanobenzenes give (cyanophenyl)tetrazolate complexes.

tion of Azide with 4-Cyanobenzaldehyde, a Schiff Base Derivative or Dicyanobenzenes To Give Formyl-, Amino(imino)- or Cyano-Functionalized Tetrazolato Complexes

Keywords: Cycloaddition / Platinum / N ligands / Azides / Schiff bases


Germanium Nanomaterials

T. J. Boyle,* L. J. Tribby, L. A. M. Ottley, S. M. Han 5550-5560

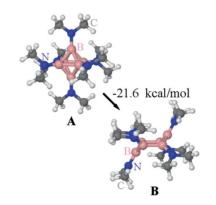
Synthesis and Characterization of Germanium Coordination Compounds for Production of Germanium Nanomaterials

Keywords: Germanium / Nanomaterials / Alkoxides / Thiols / Amides / Solid-state structures

A series of Ge^{II} precursors— $Ge[OC_6H_3-(C_6H_5)_2]_2$ shown—were synthesized for production of Ge^0 nanomaterials. Upon precipitation from solution, it was found that Ge^0 nanodots were formed from the amide, nanowires from alkoxides (shown) and siloxides, and amorphous Ge_xS_y from the silanthiolate.

Chiral (Olefin)amine Ligands

A number of chiral [bis(olefin)amino]rhodium(I) complexes containing a tropylidenyl moiety (blue) were synthesized and tested in enantioselective transfer hydrogenations by using ethanol as "green" hydrogen donor. The best results were obtained with a ligand containing a cyclohex-3'-en-1'-yl group (red) (up to 44% ee at a substrate/catalyst ratio S/C = 10000).


T. Zweifel, D. Scheschkewitz, T. Ott, M. Vogt, H. Grützmacher* 5561-5576

Chiral [Bis(olefin)amine]rhodium(I) Complexes – Transfer Hydrogenation in Ethanol

Keywords: Asymmetric catalysis / Enantioselectivity / Ethanol / Olefin complexes / Rhodium / Transfer hydrogenation

Boron Clusters

In spite of their weak aromaticity and in contrast to reports in the literature, *hypercloso*-hexa(amino)hexaboranes like **A** are *higher* in energy than the corresponding cycloisomers like **B**. This is shown experimentally as well as by computations at the B3LYP/6-311+G** level of theory. Compound **A** is the first *hypercloso*-hexaborane to be characterized by X-ray structural analysis.

W. Mesbah, M. Soleimani, E. Kianfar, G. Geiseler, W. Massa, M. Hofmann, A. Berndt* 5577-5582

hypercloso-Hexa(amino)hexaboranes: Structurally Related to Known hypercloso-Dodecaboranes, Metastable with Regard to Their Classical Cycloisomers

Keywords: Aromaticity / Boron / Structure elucidation / Density functional calculations

Chiral Phospholenes

The synthesis of optically pure 2-pyridyl-phospholene ligands by diastereomeric resolution of Pd^{II} complexes also bearing the chiral amine (R)- α -methylbenzylamine is described. A full coordination study of these ligands and the corresponding phosphole ligands has been carried out. Their catalytic behaviour in Pd-catalysed allylic substitutions has also been evaluated.

OAc
$$[Pd/(S_{C}, S_{P})-4a^{1}], r.t.$$

$$CH_{2}(COOMe)_{2}, BSA$$

$$KOAc, CH_{2}Cl_{2}$$

$$ee = 31 \% (S)$$

$$Aa^{1}$$

F. Leca, F. Fernández, G. Muller, C. Lescop, R. Réau,* M. Gómez* 5583-5591

Enantiomerically Pure P,N Chelates Based on Phospholene Rings: Palladium Complexes and Catalytic Applications in Allylic Substitution

Keywords: Palladium / Asymmetric catalysis / Chiral resolution / P ligands / Allylic substitutions

Supporting information on the WWW (see article for access details).

The editorial staff and the publishers thank all readers, authors, referees, and advertisers for their interest and support over the past year and wish them all a happy new year.

If not otherwise indicated in the article, papers in issue 35 were published online on November 30, 2009

^{*} Author to whom correspondence should be addressed.